1,111 research outputs found

    Aerodynamic force measurements with a strain-gage balance in a cryogenic wind tunnel

    Get PDF
    Aerodynamic force measurements on a generalized 75 deg delta wing model with sharp leading edges were made with a three component internal strain gage balance in a cryogenic wind tunnel at stagnation temperatures of 300 K, 200 K, and 110 K. The feasibility of using a strain gage balance without thermal control in a cryogenic environment as well as the use of electrical resistance heaters, an insulator between the model and the balance, and a convection shield on the balance was investigated. Force and moment data on the delta wing model as measured by the balance are compared at the different temperatures while holding constant either the Reynolds number or the tunnel stagnation pressure. Tests were made at Mach numbers of 0.3 and 0.5 and at angles of attack up to 29 deg. The results indicate that it is feasible to acquire accurate force and moment data while operating at steady state thermal conditions in a cryogenic wind tunnel, either with or without electrical heaters on the balance. Within the limits of the balance accuracy, there were no apparent Reynolds number effects on the aerodynamic results for the delta wind model

    Early IFNγ-Mediated and Late Perforin-Mediated Suppression of Pathogenic CD4 T Cell Responses Are Both Required for Inhibition of Demyelinating Disease by CNS-Specific Autoregulatory CD8 T Cells

    Get PDF
    Pathogenesis of immune-mediated demyelinating diseases like multiple sclerosis (MS) is thought to be governed by a complex cellular interplay between immunopathogenic and immunoregulatory responses. We have previously shown that central nervous system (CNS)-specific CD8 T cells have an unexpected protective role in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). In this study, we interrogated the suppressive potential of PLP178-191-specific CD8 T cells (PLP-CD8). Here, we show that PLP-CD8, when administered post-disease onset, rapidly ameliorated EAE progression, and suppressed PLP178-191-specific CD4 T cell responses as measured by delayed-type hypersensitivity (DTH). To accomplish DTH suppression, PLP-CD8 required differential production of perforin and IFNγ. Perforin was not required for the rapid suppressive action of these cells, but was critical for maintenance of optimal longer term DTH suppression. Conversely, IFNγ production by PLP-CD8 was necessary for swift DTH suppression, but was less significant for maintenance of longer term suppression. These data indicate that CNS-specific CD8 T cells employ an ordered regulatory mechanism program over a number of days in vivo during demyelinating disease and have mechanistic implications for this immunotherapeutic approach

    The emerging contribution of social wasps to grape rot disease ecology

    Get PDF
    Grape sour (bunch) rot is a polymicrobial disease of vineyards that causes millions of dollars in lost revenue per year due to decreased quality of grapes and resultant wine. The disease is associated with damaged berries infected with a community of acetic acid bacteria, yeasts, and filamentous fungi that results in rotting berries with high amounts of undesirable volatile acidity. Many insect species cause the initial grape berry damage that can lead to this disease, but most studies have focused on the role of fruit flies in facilitating symptoms and vectoring the microorganisms of this disease complex. Like fruit flies, social wasps are abundant in vineyards where they feed on ripe berries and cause significant damage, while also dispersing yeasts involved in wine fermentation. Despite this, their possible role in disease facilitation and dispersal of grape rots has not been explored. We tested the hypothesis that the paper wasp Polistes dominulus could facilitate grape sour rot in the absence of other insect vectors. Using marker gene sequencing we characterized the bacterial and fungal community of wild-caught adults. We used a sterilized foraging arena to determine if these wasps transfer viable microorganisms when foraging. We then tested if wasps harboring their native microbial community, or those inoculated with sour rot, had an effect on grape sour rot incidence and severity using a laboratory foraging arena. We found that all wasps harbor some portion of the sour rot microbial community and that they have the ability to transfer viable microorganisms when foraging. Foraging by inoculated and uninoculated wasps led to an increase in berry rot disease symptom severity and incidence. Our results indicate that paper wasps can facilitate sour rot diseases in the absence of other vectors and that the mechanism of this facilitation may include both increasing host susceptibility and transmitting these microbial communities to the grapes. Social wasps are understudied but relevant players in the sour rot ecology of vineyards

    Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Get PDF
    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio

    Mutations in KDSR Cause Recessive Progressive Symmetric Erythrokeratoderma

    Get PDF
    Supplemental Data Supplemental Data include five figures and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2017.05.003. Supplemental Data Document S1. Figures S1–S5 and Tables S1–S3 Download Document S2. Article plus Supplemental Data Download Web Resources 1000 Genomes, http://www.internationalgenome.org/ ANNOVAR, http://annovar.openbioinformatics.org/en/latest/ BWA-MEM, http://bio-bwa.sourceforge.net/index.shtml Database of Genomic Variants, http://dgv.tcag.ca/dgv/app/home dbSNP, https://www.ncbi.nlm.nih.gov/projects/SNP/ Exome Aggregation Consortium (ExAC) Browser, http://exac.broadinstitute.org/ ExonPrimer, https://ihg.helmholtz-muenchen.de/ihg/ExonPrimer.html GenBank, https://www.ncbi.nlm.nih.gov/genbank/ Genome Analysis Toolkit (GATK), https://software.broadinstitute.org/gatk/ Integrative Genomics Viewer (IGV), http://software.broadinstitute.org/software/igv/ OMIM, https://www.omim.org/ SNPmasker, http://bioinfo.ebc.ee/snpmasker/ UCSC Genome Browser, https://genome.ucsc.edu/index.html Variant Effect Predictor, http://useast.ensembl.org/info/docs/tools/vep/index.html The discovery of new genetic determinants of inherited skin disorders has been instrumental to the understanding of epidermal function, differentiation, and renewal. Here, we show that mutations in KDSR (3-ketodihydrosphingosine reductase), encoding an enzyme in the ceramide synthesis pathway, lead to a previously undescribed recessive Mendelian disorder in the progressive symmetric erythrokeratoderma spectrum. This disorder is characterized by severe lesions of thick scaly skin on the face and genitals and thickened, red, and scaly skin on the hands and feet. Although exome sequencing revealed several of the KDSR mutations, we employed genome sequencing to discover a pathogenic 346 kb inversion in multiple probands, and cDNA sequencing and a splicing assay established that two mutations, including a recurrent silent third base change, cause exon skipping. Immunohistochemistry and yeast complementation studies demonstrated that the mutations cause defects in KDSR function. Systemic isotretinoin therapy has achieved nearly complete resolution in the two probands in whom it has been applied, consistent with the effects of retinoic acid on alternative pathways for ceramide generation

    Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans

    Get PDF
    Caenorhabditis elegans is a compact, attractive system for neural circuit analysis. An understanding of the functional dynamics of neural computation requires physiological analyses. We undertook the characterization of transfer at a central synapse in C. elegans by combining optical stimulation of targeted neurons with electrophysiological recordings. We show that the synapse between AFD and AIY, the first stage in the thermotactic circuit, exhibits excitatory, tonic, and graded release. We measured the linear range of the input-output curve and estimate the static synaptic gain as 0.056 (<0.1). Release showed no obvious facilitation or depression. Transmission at this synapse is peptidergic. The AFD/AIY synapse thus seems to have evolved for reliable transmission of a scaled-down temperature signal from AFD, enabling AIY to monitor and integrate temperature with other sensory input. Combining optogenetics with electrophysiology is a powerful way to analyze C. elegans’ neural function

    A wirelessly powered and controlled device for optical neural control of freely-behaving animals

    Get PDF
    Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists' capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically, awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted light-emitting diode (LED), tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the extended illumination periods often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 g capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2 W of power to the LEDs in steady state, and 4.3 W in bursts. We also present an optional radio transceiver module (1 g) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be controlled simultaneously from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control.National Institutes of Health (U.S.) (NIH Director’s New Innovator Award (DP2OD002002))National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1RC2DE020919)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Institutes of Health (U.S.) (Grant 1R43NS070453)National Science Foundation (U.S.) (CAREER award)National Science Foundation (U.S.) (NSF Grant DMS 1042134)National Science Foundation (U.S.) (NSF Grant DMS 0848804)National Science Foundation (U.S.) (NSF Grant EFRI 0835878)Benesse FoundationGoogle (Firm)Dr. Gerald Burnett and Marjorie BurnettUnited States. Dept. of Defense (CDMRP PTSD Program)Massachusetts Institute of TechnologyBrain & Behavior Research FoundationAlfred P. Sloan FoundationSociety for NeuroscienceMassachusetts Institute of Technology. Media LaboratoryMcGovern Institute for Brain Research at MITWallace H. Coulter Foundatio

    Community based rehabilitation: a strategy for peace-building

    Get PDF
    BACKGROUND: Certain features of peace-building distinguish it from peacekeeping, and make it an appropriate strategy in dealing with vertical conflict and low intensity conflict. However, some theorists suggest that attempts, through peace-building, to impose liberal values upon non-democratic cultures are misguided and lack an ethical basis. DISCUSSION: We have been investigating the peace-building properties of community based approaches to disability in a number of countries. This paper describes the practice and impact of peace-building through Community Based Rehabilitation (CBR) strategies in the context of armed conflict. The ethical basis for peace-building through practical community initiatives is explored. A number of benefits and challenges to using CBR strategies for peace-building purposes are identified. SUMMARY: During post-conflict reconstruction, disability is a powerful emotive lever that can be used to mobilize cooperation between factions. We suggest that civil society, in contrast to state-level intervention, has a valuable role in reducing the risks of conflict through community initiatives

    cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans

    Get PDF
    The GAL4–UAS system is a powerful tool for manipulating gene expression, but its application in Caenorhabditis elegans has not been described. Here we systematically optimize the system's three main components to develop a temperature-optimized GAL4–UAS system (cGAL) that robustly controls gene expression in C. elegans from 15 to 25 °C. We demonstrate this system's utility in transcriptional reporter analysis, site-of-action experiments and exogenous transgene expression; and we provide a basic driver and effector toolkit
    • …
    corecore